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havior of other volatile components (H20, CO2, and others) (Mueller, 
1960; Kranck, 1961; Klein, 1966; French, 1968; Butler, 1969). 

Siderite (FeCO g) is a common constituent of low-grade sedimentary 
iron formations and some hydrothermal veins. The mineral is of particu­
lar interest because, as an iron carbonate, its stability is dependent on 
pressure, temperature, and the fugacities of both CO2 and O2, Experi­
mental determination of siderite stability relations therefore provides 
useful data for estimating the values of T , f02, and fC02 present during 
certain types of chemical sedimentation, low- to medium-grade meta­
morphism, and hydrothermal activity. 

The term siderite here refers to calcite-type carbonates in which the 
FeCOg end-member is dominant. Complete solid solution apparently 
exists between Fe2 + and Mg2+ and between Fe2+ and Mn2+ (Palache, 
Berman, and Fronde!, 1944; Goldsmith, 1959; Rosenberg, 1963a, 1963b, 
1967), and although carbonates with over 95 mole percent FeCOa have 
been reported (Hutchinson, 1903; Ford, 1917), most natural siderites 
contain significant amounts of Mg2+ and Mn2+. (For analyses, see Ford, 
1917; Sundius, 1925a, 1925b; Schoklitsch, 1935; Palache, Berman, and 
Fronde!, 1944; Hiigi, 1945; Smythe and Dunham, 1947; Deer, Howie, and 
Zussman, 1962, p. 272-277; James, 1954; French, 1968.) 

Natural siderite is commonly associated with iron-rich dolomite 
(ankerite) and is most commonly found in sedimentary iron formations 
(James, 1954; Pettijohn, 1957; Carozzi, 1960) and in hydrothermal veins 
(Lindgren, 1933; Wahlstrom, 1935; Legraye, 1938; Fabian, Mueller, and 
Roese, 1957; Shaw, ms). (For detailed information on other occurrences, 
see Deer, Howie, and Zussman, 1962, p. 272-277; French, 1970). Siderite 
is present in moderately metamorphosed iron-rich rocks, generally as­
sociated with the iron-amphibole grunerite (Gustafson , 1933; Tilley, 
1938; James, 1955; Klein, 1966) but has not been reported from highly­
metamorphosed rocks containing iron-rich pyroxenes (James, 1955; 
Gundersen and Schwartz, 1962; French, 1968; Bonnichsen, ms) . 

Two types of decarbonation reactions exist for natural carbonate 
minerals (Jamieson and Goldsmith, 1960): 

RCOa = RO + CO2 (1) 

a RCOs + ! O2 = RaOa+l + a CO2 (2) 

In reaction (1), the divalent cation (R) is not oxidized, and equilibrium 
is independent of the partial pressure of oxygen. In reaction (2) , the 
cation may assume different valences and form a variety of oxides at dif­
ferent values of Po . 
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Most experimental studies have dealt with reactions of the first type. 
Stability relations as a function of PC02 and T have been determined for 
calcite (CaCOa) and magnesite (MgCOa) (Harker and Tuttle, 1955a) and 
for smithsonite (ZnCOa) (Harker and Hutta, 1956). The analogous re­
action of dolomite to form calcite, periclase (MgO), and CO2 has been 
determined by Harker and Tuttle (1955a). 
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Siderite (FeC03) and rhodochrosite (MnCOs) decompose according 
to reaction (2). Their stability is a function of T, P C02 ' and P0 2' and these 
three variables must be controlled simultaneously for rigorous stability 
determinations (French and Eugster, 1965; Huebner, 1969). 

The effect of f0 2 has generally not been considered in previous studies 
of siderite stability. Siderite is not stable under atmospheric conditions 
(P0 2 = 0.2 atm) as has been demonstrated by several lines of evidence 
(French, 1970): (1) thermodynamic calculations (Holland, 1959, 1965; 
Garrels, 1960); (2) conversion of natural siderite to iron oxides or hy­
droxides upon exposure to the . atmosphere or to near-surface ground 
waters (Silliman, 1820; Burchard, 1924; Smythe and Dunham, 1947); (3) 
experimental room-temperature oxidation of siderite (Schaller and Vlisi­
dis, 1959; Jamieson and Goldsmith, 1960; Seguin, 1966). 

The absence of f0 2 control in DTA (differential thermal analysis) 
studies of siderite decomposition makes the results difficult to interpret 
(for details, see French, 1970). The experiments were performed apparent­
ly under metastably high f02 values, as indicated by the strong effect of 
different furnace atmospheres on reaction temperature (Rowland and 
Jonas, 1949; Kissinger, McMurdie, and Simpson, 1956; Powell, 1965) and 
by the change in observed reaction temperature with changes in heating 
rate (Kissinger, McMurdie, and Simpson, 1956). 

Subsolidus relations in the system CaC03-MgC03-MnC03-FeC03 

have been studied hydrothermally at elevated temperatures, using values 
of PC02 high enough to prevent dissociation of the carbonate (Goldsmith, 
and others, 1962; Rosenberg and Harker, 1956; Rosenberg, 1963a, 1963b, 
1967). In these studies, fo was not controlled, and occasional oxidation 
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of siderite to magnetite was observed (Rosenberg, ms, p. 8; Goldsmith 
and others, 1962, p. 660). More recent hydrothermal studies on the de­
composition and stability of siderite itself (Weidner and Tuttle, 1964; 
Weidner, ms; Seguin, 1968; Johannes, 1968, 1969) were made also without 
explicit f0 2 control. 

The present study of siderite stability is the first in which definite 
control of fo• has been established by the use of open capsules surrounded 
by a solid-phase oxygen buffer (French and Eugster, 1965; Huebner, 
1969). Preliminary data on siderite stability obtained by this method have 
already been presented (French, 1965; French and Eugster, 1965; French 
and Rosenberg, 1965). 

THERMODYNAMIC CALCULATION OF SIDERITE STABILITY 

Preliminary thermodynamic calculation of the stability field of 
siderite was undertaken to: (1) determine the general shape of the sta­
bility field and the relations between possible stable and metastable re­
actions; (2) allow subsequent comparison between calculated and experi­
mentally determined stability data. 

Sufficient thermodynamic data exist for calculation of the stability 
field of siderite in terms of PC02' f0 2, and T (see, for example, Garrels and 


